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ABSTRACT 

By a resul t  of F. Hofbauer  [11], piecewise monotonic  m a p s  of the  interval 

can be identified wi th  topological Markov chains  with respect  to measures  

wi th  large entropy. We generalize this  to a rb i t ra ry  piecewise invertible 

dynamica l  sy s t ems  under  the  following assumpt ion :  the  total  ent ropy of the  

s y s t e m  should  be greater  t h a n  the  topological ent ropy of the  b o u n d a r y  of 

some reasonable  par t i t ion  separa t ing  a lmost  all orbits.  We get  a sufficient 

condi t ion for these  m a p s  to have a finite n u m b e r  of invar iant  and  ergodic 

probabi l i ty  measu res  wi th  max i ma l  entropy. We i l lustrate  our  resul ts  by 

quo t ing  an  appl ica t ion to a class of mul t i -d imensional ,  non-l inear,  non- 

expansive  s m o o t h  dynamica l  sys tems .  

1. I n t r o d u c t i o n  

The motivation of this paper is the study of the "complexity" of chaotic multi- 

dimensional dynamical systems. By a chaotic dynamical system, we mean one 

that has positive topological entropy: the number of distinguishable orbits of 

given length, given some arbitrarily small precision, grows exponentially with 

the length (see below p. 361). One would like to find models for large classes of 

such dynamical systems, i.e., prove isomorphism "in the sense of entropy" with 

simple systems. 

In this paper we prove that an arbitrary piecewise invertible dynamical system 

is isomorphic "in the sense of entropy" with a countable topological Markov chain 

as soon as one can find some invertibility partition (see below p. 359) such that: 

(1) the topological entropy of the boundary of the partition is smaller than 

the total topological entropy; 
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(2) the partition separates orbits outside some set which is negligible "in the 

sense of entropy". 

We also prove a finiteness result. 

We conclude by quoting a non-trivial application to a class of multi-dimensional 

dynamical systems. We show that fibered perturbations of products of chaotic 

smooth interval maps have a finite number of invariant and ergodic probability 

measures with maximal entropy. 

ACKNOWLEDGEMENT: I would like to express my gratitude to Ph. Thieullen 

who introduced me to this subject and provided me with many invaluable ideas, 

not speaking of his constant encouragement. 

1.1 SOME DEFINITIONS. Before stating our Main Theorem, we have to give 

some definitions. 

ISOMORPHISM IN THE SENSE OF ENTROPY. Through the variational principle 

(see, e.g., [8]), the topological entropy htop(f) of (X, f )  appears often as the 

supremum h(f) of the entropies h~(f) of the (infinitely-many) invariant and 

ergodic probability measures # E Merg(X, f )  carried by a dynamical system. 

Hence it is natural to focus on the invariant and ergodic probability measures 

with entropy close to the supremum. 

For technical reasons, we shall consider the natural extensions instead of the 

original maps (see Remark 2.1(c)). Recall that the n a t u r a l  e x t e n s i o n  (X, 9 c) 

of an endomorphism (X, f )  of a measurable space can be defined as the left-shift 

5 c acting on the set A" of complete orbits: 

X = {x C XZ: Vp e Z Xp+l = f(Xp)} and $': (Xp)peZ ~ (Xp+l)peZ. 

Loosely speaking, (A', 5 v) and (X, f )  are essentially the same from the point of 

view of complexity. For instance, their invariant probability measures are in a 

one-to-one relationship in a way which preserves ergodicity and entropy. 

These remarks motivate the following definition of isomorphism. Let (X, f )  

and (Y, g) be endomorphisms of measurable spaces. Assume that  they have 

positive t o t a l  en t rop ies :  

h(f)  def sup{ht,(f): # • Merg(X, f )}  > 0 and h(g) > O. 

Consider their natural extensions (X, 5 r )  and (y,  6). 
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Detlnition 1.1: We say that (X, f) and (Y,g) are i s o m o r p h i c  in t h e  sense  

o f  e n t r o p y ,  or simply h - i somorph ic ,  if there exist invariant subsets 2d' C X, 

Y' C Y of the natural extensions, such that: 

(1) the restricted systems (X',9 v) and (Y,G)  are conjugated by some 

bi-measurable invertible map; 

(2) the complements of these sets are h-negligible,  i.e., there exists 

0 ~_ H < h(f) such that 

/z E Merg(X,.~- ) and h~(~) > H  ::=v # ( X \ X ' )  = 0 ,  

and likewise for y \ y~. 

One could also further concentrate on the measures (if they exist) which realize 

the supremum of the entropy: that is the original point of view of in t r ins ic  

e r g o d i c i t y  introduced by B. Weiss [20]. 

TOPOLOGICAL MARKOV CHAINS. The simplest class of combinatorial dynam- 

ical systems which contains systems having entropy with any prescribed non- 

negative value is the class of topological Markov chains, provided that  we allow 

the underlying graphs to be countably infinite. We recall that a t opo log i ca l  

M a r k o v  cha in  is the set E(G) of bi-infinite paths on some countable (maybe 

finite) oriented graph G together with the left-shift a: 

E(G) = {g E GZ: Vp E Z gp ~ gV+l} and a: (gp)pEZ ~'~ (gp+l)pEZ. 

Of course, not every chaotic smooth dynamical system is h-isomorphic to a 

topological Markov chain (consider the product of an irrational rotation with 

anything of positive topological entropy). 

We recall that  E(G) splits into its i r r e d u c i b l e  sub-cha ins ,  E(H) ,  where H 

ranges over the sub-graphs maximal with respect to inclusion having the following 

property: for every (g, h) E H 2 there exists a path from g to h. Each irreducible 

sub-chain is a maximal topologically transitive subset of E(G). B. M. Gurevi~ 

[9, 10] proved that  each irreducible sub-chain carries at most one invariant prob- 

ability measure with maximal entropy, so the number of irreducible sub-chains 

with large entropy bounds the number of such measures. 

PIECEWISE INVERTIBLE DYNAMICAL SYSTEMS. We study (X, P, f )  such that: 

(1) the space X is metric; 

(2) the "partition" P is a countable collection of pairwise disjoint subsets of 

X,  the union of which 

Y = U A  
AEP 
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is open and dense in X. Each A E P is non-empty, open and relatively 

compact, it is also connected and locally connected; 

(3) the map f:  Y --+ X is such that for every A E P,  there is a homeo- 

morphism fA: U --+ V with open sets U D A, V D f(A),  such that  its 

restriction to A coincides with that of f .  

Recall that  the iterated partition is 

pn =- {[A0""  An-l] def Ao n f - lA1  A . . .  N f -n+lAn_ 1 ~ 0: A0 , . . . ,  A~-I  E P},  

the set of n - c y l i nde r s  for n = 1, 2 , . . . .  We write Pn(x) for the element of P~ 

containing some point x E X, if that  element exists. 

We shall need to measure the quality of the coding through P: 

Detinition 1.2: We write Pn(X) for the connected component of the cylinder 

P~(x) containing x. We say that P h - sepa ra t e s  if for all x E X outside some 

h-negligible set, we have 

lim diam(P,~(x) )  = O. 
n - 4 , o o  

The m u l t i p l i c i t y  e n t r o p y  of (X, P, f )  is 

hmult(P, f )  = limsup _1 log mult(P~) with mult(Q) = max # { A  E Q: x E A}. 
n--*oo ~ x E  X 

(X, P, f )  is not supposed to satisfy the Markov property, i.e., we do not assume 

that  the sets f (A)  for A E P are unions of elements of P. Such a property would 

imply that  the symbolic dynamics of (X, f )  would be the topological Markov 

chain defined by P together with the arrows A -~ B ~=* f(A) D B, bringing 

us quite close to our goal. 

Now one can force this property by going to an extension. Following G. Keller's 

version [14] of F. Hofbauer's construction [11], set 

P1 = P and P~+I = {f(A) N B  ~ 0: A E Pn and B E P} 

for n > 1. The M a r k o v  e x t e n s i o n  is defined as the disjoint union of the 

elements of U~>l P~ together with the obvious dynamics (see below for the con- 

nected case). 

Clearly, the Markov extension satisfies the Markov property with respect to 

the obvious partition. Moreover, this construction is always possible. However, 

one can expect it to give trivial results in many cases. For instance, the Markov 
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extension could have no invariant probability measures. F. Hofbauer [11] has 

shown that  for piecewise monotonic maps with positive entropy: the map, the 

Markov extension and the topological Markov chain defined using the Markov 

property are all h-isomorphic (with a constant H = 0). 

To get something similar in spirit for non-linear multi-dimensional systems, 

it turns out that  we have to modify this construction by taking the connected 

components of the intersections f (A) N B above, instead of the intersections 

themselves. This will ensure that "bad measures are related to the border of the 

partition" (in a sense made precise in section 2) and we shall get an h-isomorphism 

(with a constant H given by the entropy of the boundary of P).  

Definition 1.3: The c o n n e c t e d  M a r k o v  d i a g r a m  of (X, P, f )  is :D = Un>l Dn 

with 

~)1 = P ,  

~ n + l  = 

{C: C ¢ 0 is a connected component of f (A)  N B for A • Dn and B • P}. 

Moreover, D has a natural graph structure: 

U --+ V ~ V is a connected component of f(U) ;~ B for some B E P. 

D thus defines a topological Markov chain Z(D). 

Remark that  D is countable. Indeed, its elements are open (each element of 

P is open and locally connected) so that any element U C D can have only 

countably-many successors included in any B C P, which has compact closure. 

Having taken the connected components instead of the cylinders, it is no longer 

possible to work with the symbolic dynamics. One could replace it with a version 

of the "Yoccoz puzzle". But it turns out to be easier to work in a Markov 

extension. 

Definition 1.4: The c o n n e c t e d  M a r k o v  e x t e n s i o n  of (X, P, f )  is ()(,/5, ] )  

defined as 

2( = {(x,D) E X x ~D: x E D}, 

/5 = {~r~l(D): D e ~D} with lrz~: (x ,D)  ~ D, 

] = (x, D) ~ ( f (z) ,  E), 

where E is the successor of D in D containing f (x) ,  if it exists. 
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Remark that ] is defined only on Y de~ {(x,D) • )(: x • Y M f - l ( y ) } .  

We have the natural map #: (x, D) ~-+ x from )(  to X. # is in general infinite- 

to-one. On the domain ]Y of f we have 

# o ] = f o # .  

ENTROPIES. We recall the definition of the B o w e n  topo log ica l  e n t r o p y  [1]. 

Given a positive integer n, let dn(x,y) be the distance max0<k<n d(fkx, fky). 
An (e, n)-ball is a ball with radius e > 0 with respect to d~. An (c, n)-covering is 

a covering by (e, n)-balls and the (E, n)-covering number of S C X is the minimal 

cardinality of an (e, n)-covering of S and is denoted by r(e, n, S). If f is defined 

only on a subset of X (as here), then we adapt these definitions by requiring an 

(e, n)-cover of S to cover only the set of points in S which define orbits with a 

length at least n. 

The topological entropy of a (non-necessarily invariant) subset S of X is 

1 
htop(S, f )  = lira lira sup - log v(e, n, S). 

e--+0+ n - ~ o o  n 

Our entropy condition will be about the b o u n d a r y  of P. Set 

OP = lJ OA. 
AEP 

We have to assume that the boundary of our system is small from the point of 
view of the entropy. 

To define the dynamics on the boundary we embed (X, f )  in a continuous 

extension, namely the action of the left-shift a on X x P: 

{(x,A) c YN × PN: Vn C N xn+l = f(x~) and x~ • An} c X N × P N  

(P  being endowed with the discrete topology). The b o r d e r  e n t r o p y  is defined 

a s  

hB(P,f)  = htop({(x,A) e X × P: Xo • OP},a), 

X × P being endowed with any metric of the form 

d((x, A), (y, B)) = d(xo, Yo) + ~ 2-~dp(A~, B~) 
n>_O 

with dp a bounded metric on P. 
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Remark 1.5: If (X, P, f )  is a piecewise invertible dynamical system such that X 

is compact and f extends continuously to the whole of X, then 

hB(P, f )  < htop(0P, f)  4- hmult(P, f )  

provided, if P is infinite, that, identifying P with {1,2, . . .  }, we choose the 

distance dR(n, m) = [1In -- 1/m[. 

We defer the proof to the Appendix, at the end of the paper. 

1.2  MAIN RESULTS. W e  state and discuss our results. 

MAIN THEOREM: Let (X, P, f )  be a piecewise invertibte dynamical system. 

Assume that 

(H1) P h-separates, 

(H2) hB(P, f )  < h(f) .  

Then (X, f ) ,  ( X , / )  and E(:D) are all h-isomorphic. Moreover, 

u 
k < n  

The point of the inequality (1.1) is the following: 

COROLLARY 1.6: Let ( X , P , f )  satisfies hypothesis (H1) (H2) of the Main 

Theorem. Assume in addition that 

(H3) for each n ~ 1, T~n is finite. 

Then for some constant H < h( f ) ,  there are finitely many irreducible sub-chains 

having total entropy greater than H. 

Using B.M. Gurevi~'s result, we get: 

COROLLARY 1.7: Let (X, P, f )  satisfy hypotheses (H1)-(H3). Then there can 

only be finitely many invariant and ergodic probability measures with maximal 

entropy. 

Remark 1.8: We shall prove slightly stronger statements (Theorems A, B and 

C). In particular, for applications to perturbations as in Theorem 1.9 below, it 

turns out to be interesting to have an estimate, uniform with respect to f ,  on 

the rate of convergence of the lim sup in the inequality (1.1). 

To illustrate our results we give the following application: 
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THEOREM 1.9 [6]: Let f l , . . . ,  fd: [0, 1] -+ [0, 1] be C ~ interval maps with 

positive topological entropy and n o n - d e g e n e r a t e  critical orbits: for each i = 

1 , . . . ,  d, for all points c with f[(c) = O, we have 

f;'(c) ~ 0  and f;(fik(c)) ~ 0 (Vk_> 1). 

Then every small enough C~-perturbat ion F: [0, 1] d --~ [0, 1] d of the direct 

product Fo = f l  × "'" x fa, which is fibered, that is, of the form 

F(Xl , . . . ,Xd)  = (A(Xl) , /2(Xl ,X2) , . - . , fd(Xl , - - . ,Xd))  

for some maps ~: [0, lff -4 [0, 1], 

is isomorphic in the sense of entropy with a topological Markov chain which has 

a finite number of  irreducible sub-chains. 

COROLLARY: Every such perturbation F: [0, 1] d -4 [0, 1] d has a finite, non-empty  

set of invariant and ergodic probability measures with maximal entropy. 

We remark that  we get for these multi-dimensional systems the same results 

as F. Hofbauer [111 on the interval. 

We stress that  the maps in this example are non-linear and non-expanding. 

It is enough to check that  hypotheses (H1)-(H3) are satisfied for these maps. 

The proof will appear elsewhere, as it uses quite different techniques from the 

ones of this paper, notably entropy estimates by approximation of differentiable 

submanifolds by semi-algebraic sets and related results of Y. Yomdin [21]. 

We think that  our technique can be applied to many other interesting classes of 

multi-dimensional dynamical systems. For instance, we can prove that piecewise 

expanding maps in arbitrary dimensions have generically a non-zero and finite 

number of ergodic absolutely continuous invariant measures [7]. 

COMMENTS. The starting point of our work was the result by F. Hofbauer [11] 

about piecewise monotonic interval map with positive entropy. Remark that  in 

this case our Main Theorem gives exactly F. Hofbauer's result: taking P to be the 

partit ion into monotonicity intervals we see that the boundary of the partit ion is 

finite (hence has zero entropy) and that  the cylinders are connected, so that  the 

connected diagram and the usual diagram are the same. 

There had been previous attempts to use Markov diagrams in higher dimension, 

by F. Hofbauer [12] and then by G. Keller [15]. Indeed, we are indebted to 

G. Keller's paper, although our approach is quite different: for instance we get 

a pointwise isomorphism, a result that was thought specific of the interval. We 

also have benefited from S. Newhouse's presentation [16] of F. Hofbauer's result. 
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In [2, 3, 4], we showed how to deal with an infinite boundary but we had to as- 

sume that  the cylinders were connected--  a very restrictive geometric condition 

which seemed to prevent the study of non-linear multi-dimensional mappings. 

The removal of this assumption is the most important point in this paper. An- 

other point, less important and more technical, is that  working with a Maxkov 

extension, more obviously related to the dynamics than E(1)), allows several sim- 

plifications. The only price to be paid is that we have to discard a h-negligible 

subset not only in (X, f )  but also in ()(, ] ) .  

Remark 1.10: As was pointed to us by G. Keller, it can be interesting (for 

example, to have "margins" for distortion estimates) to redefine the Maxkov 

diagram as Un_>0 :D~ with :D~ = {X} and T~+ 1 the set of connected components 

of f (A N Z) for A C :D~ and Z C P.  It makes only trivial changes from our 

point of view. More precisely, Theorem A remains true for this variant of the 

construction. Theorem B fails for obvious reasons: for instance, if f(A) = X 
for all A C P then this variant of the Maxkov diagram has only one point. But 

one can recover Theorems B and C very easily, by putting labels on the Markov 

diagram: label U -~ V with B E P if V is a connected component of f(U A B) 
and define the topological Maxkov chain over the alphabet /9  ~ x P in the obvious 

way. 

1.3 OUTLINE OF THE PROOF. We start by establishing the h-isomorphism of 

(X, f )  with its connected Maxkov extension ()C, ] ) .  We proceed by trying to find 

an inverse to 7?. This inverse will only be partially defined and will not be onto 

either. Thus we get a measurable isomorphism between subsets (Proposition 2.2). 

To see that  the complements of these subsets carry only measures with small 

entropy, we prove that  every such measure is "shadowed" by the boundary of the 

parti t ion (Propositions 2.6 and 2.7). An abstract ergodic result (Theorem 2.4) 

shows then that  the entropy of such a measure is bounded by the topological 

entropy of the shadowing set, finishing the proof of h-isomorphism of (X, f )  with 
(:L]) 

We continue by checking the isomorphism of the Maxkov extension ()(, ] )  with 

the topological Markov chain E(:D). We have a natural map: ~ ~-+ (~rv(/'~))neN. 
From the condition that P h-separates, one deduces that  the sets ( in)~ as well 

as in E(:D)) where this map fails to be one-to-one axe h-negligible. To check that  

this map is h-almost onto, one remarks that  the paths belonging to E(:D) which 

axe not in the image correspond, in some sense, to itineraries of orbits going 

through OP. Now if a set is not negligible for some measure, then its topological 

entropy bounds the entropy of the measure and this finishes the proof of the 
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isomorphim. 

Finally, inequality (1.1) (the smallness of the entropy at infinity) follows from 

the fact that  paths on D \ [-Jk<n :Dk are shadowed in some sense by the boundary 

of P if n is very large. This gives the needed bound on the entropy of the 

corresponding measures. 

2. I s o m o r p h i s m  w i t h  t h e  M a r k o v  ex tens ion  

We prove in this section the following: 

THEOREM A: Let (X, P, f) by a piecewise inyertible dynamical system. Set 
AP = UAeP fA(CgA). Assume that: 

(H1) P h-separates, 

(H2') htop(AP, f)  < h(f). 
Then (X, f)  and are h-isomorphic. 

Remark 2.1: (a) Theorem A is slightly stronger than the corresponding part of 

the Main Theorem as (H2') only counts real orbits and does not take into account 

hmult(P, f), i.e., the separation by P of close-by points. 

(b) The assumption that P h-separates makes things a little simpler, but one 

can remove it provided one replaces the entropy condition (H2') by: htop(AP, f ) +  

bloc(P, f)  < h(f) with hloc(P,f) defined as the growth rate with respect to 
n, when e ~-~ 0+, of the maximum number of e, n-orbits within any connected 

component of an arbitrary n-cylinder. 

(c) We are going to check that 7i- is a pointwise isomorphism between almost 

all of the natural extensions. Going to the natural extensions is really necessary. 

Let us give an example. Consider fl-transformations, i.e., x ~+ flxmod 1 on [0, 1[ 

with parameter fl > 1. Fix 1 < fl < ( 1 + x / 5 ) / 2  such that the orbit of 1 is 
not eventually periodic. P = {]0, fl-l[,]f1-1, 1[}. The element of the Markov 

diagram containing ](5) determines the element of P containing #(~). Indeed, 

every element of the diagram has exactly one predecessor, except for ]0, fl-l[.  

But, as f t .  I]f1-1, 1[I < fl-1, all the predecessors of that element are subsets of 

]0, fl-l[.  Hence, if ~ is an isomorphism between (X, ] , / t )  and (X,f,#) so that  

# - l ( p )  is a generating partition, we get that 

V ]-nir-l(P) D V ] -n~ D 7r-l(P). 
n > l  n > l  

But this implies that /5 and therefore # have zero entropy. | 
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2 .1  EXISTENCE OF AN ISOMORPHISM BETWEEN SUBSETS. 

an obvious injection: 

i: x • Y =  U A,  ~ ( x ,P(x ) )  • 2 .  
A E P  

We have the following easy formula: 

(2.1) 

Remark that we have 

f~(x ,  D) = ( f~(x) ,  f n ( C z ( D  n P=+I (x)))), 

where C~(.) denotes the connected component containing x. 

In particular, f~  (i(x)) = (f~ (x), fn  (P~+I (x))). 

Let (X, 5 c) resp. (2 ,  ~ )  be the natural extensions of (X, I )  resp. ( 2 ,  f ) ; / r :  2 --+ 

X extends to a unique map #: 2( --+ X. 

PROPOSITION 2.2: Consider the following invariant subsets of the natural 

extensions: 

2 '  = {5 • 2 :  vp • z3n > 0 2p = ]~(i(~(2p_~)))}, 

x '  = {x • 2(: Vp • z the sequence (fn(P~+l(xp_n)))~eN stabilizes} 

(by "stabilization" we mean that the sequence is constant for large n). 

Then the restriction ~r: ( fd ' ,~)  -+ (2d',fY) is a welt-defined measurable 

isomorphism. 

Proof'. We first show that  this restriction of/r  is well-defined, i.e., that  77(2(t) C 

X'.  Let 2 E 2('. Set (xp, Dp) = 2p for p E Z. We prove that x = (Xp)pe Z d e  f 

~(2) c x ' .  

As 2 E 2(', there exists an integer n _> 0 such that 50 = f'~(i(X--n)), i.e. 

(2.2) Do = fn(Pn+l(X-n)) .  

Let m > n. As 2 E 2 ,  50 = fm(2- ,~)  so that 

Do = fm(C~_ , , (D-m N P,~+l(x-m))) 

according to (2.1). Hence f '~(Pm+l(x- ,~))  D Do. 

On the other hand, fm--n(Pm+l(X_m)) C Pn+l(x-~) :  this, with (2.2), gives 

the reverse inclusion so that  we have the equality fm(Pm+l(x_,~))  = Do for all 
$D, ~ n .  

This is the required stabilizing property for p = 0. The case for general p E Z 

is similar and therefore #(2) E X ~, as was to be proved. 
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We note tha t  we have also proved that,  if ~p -- ]"(i(Xp_n)) for some n, then 

SCp = ]m(i(Xp_,~)) for all m _> n. 

Now, we build the inverse j of ~r: ,~' --+ 2('. Let x C 2". Define ~c = j (x )  by 

setting, for all p E Z, 

~p = ]n(i(Xp-n))  = (xv, fn(pn+l(Xp-n)))  for large n. 

Each ~p is well-defined by the stabilization property. 

Taking n large enough we have SCp = ]n(i(xv_n)) and ~:p+l = ]n+l(i(Xp-n))  

so tha t  Xp+l = ](X.p). Thus ~ E ,~. Now it is clear that  ~ E ,~'. 

We check tha t  j is indeed the inverse of 7?. Clearly, # o j = Id. But the 

definition of 2~' makes it clear that  77[2d' is one-to-one. Thus j = ~r -1 as claimed. 

I 

2.2 SHADOWING OF A MEASURE. We shall prove that  bad measures, i.e., 

measures such that  the good set 2/' or X '  has not total measure, are "related" 

to the border of the partition. The relationship will be the following. 

In this subsection we only assume that  (X, f )  is a measurable self-map of some 

standard space with natural  extension (X, 9r). 

Definition 2.3: We say that  a measure # E M(X, ~') is s h a d o w e d  by a subset 

S of X if the following holds: for every e > 0, for #-a.e. x C X, one can find 

arbitrari ly large integers m, n and a point s E S such that:  

(2.3) 

d(x_n+k, f k ( s ) )  < e for at least (1 -- e ) ( m + n +  1) of the k's in [O,m+n]. 

We say tha t  [ -n ,  m] is a e - shadowing  i n t e r v a l  for x with respect to S. 

The shadowing property gives a bound on the metric entropy in terms of 

Bowen's topological entropy of the subset which shadows: 

THEOREM 2.4 ([2]): Let (X, f )  be some measurable endomorphism with X 

some standard space. Let # be an invariant probability measure on the natural 

extension of (X, f )  which is shadowed by some subset S of X .  Then 

h(J r, #) _< htop(S, f ) .  

We refer to [2, p. 59-61] for the proof. We note that  it is very similar to the 

proof of Theorem C below. 

The shadowing property will be proved first under the following "symbolic" 

form: 
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Given a measurable partition P of X, we say that  # is P - s h a d o w e d  by S if 

shadowing holds but with (2.3) replaced by the condition: 

(2.4) x - n  and s are in the same element of Pn÷m÷l 

(the number e does not play any role here). 

We have the following easy fact: 

LEMMA 2.5: Assume that P separates l~-almost every orbit. Then P-shadowing 

implies shadowing (for #). 

The definition of shadowing (in particular the e) was chosen to make this true 

and even obvious. 

2.3 BAD MEASURES ON (,~',.T'). 

PROPOSITION 2.6: Let # be an invariant and ergodic probability measure of 
(X ,~ )  such that #(X \ X') > O. Then # is P-shadowed by A P  = UAeP fA(OA). 

Proof'. Let # be as above. As X' is invariant and # is ergodic,/z(X \ X ~) --- 1. 

Write X' = ~vez Xp with 

Xp = {x e X: the sequence (f'~(P,~+l(Xp-,~)))neN stabilizes}. 

We relate the property "x E Xp" to the boundary of P.  To start with, x ~ Xp 

if and only if there exist infinitely-many integers n >_ 0 such that 

fn+l(pn+2(Xp_n_l) ) C fn(pn+l(Xp_n) ). 

This strict inclusion occurs if and only if f(P(xp-n-1)) does not cover 

Pn+l(Xv_,~ ). These two sets always meet and P,~+l(xp-,~) is a connected set 

by definition. Hence, the strict inclusion occurs if and only if 

(2.5) Of(P(xp-n-1)) N Pn+l(Xp-n) ~ O. 

Obviously,  (2.5) implies Of(P(X(p_l)_(n_l)_l) ) f"l V(n_l)+l(X(p_l)_(n_l)) ~ 0. 
Therefore, X \ Xp C X \ Xp-1. But, by definition, ~ ' - l x p  = Xp+x, so that  

#(Xp) = #(Xp-1). Hence, Xp = Xp-1 modulo #. In particular 

X\X'= NX\Xp mod#. 
pEZ 
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Now given any constant L, one can find a shadowing interval [ -n ,  m] with 
n , m  > L. Indeed, just take m = L, and the existence of n as required is 

then a consequence of x ~ X,~, using (2.5) and 

Of(A) = fA(OA) C A p  VA e P. 

Hence # is P-shadowed by AP. I 

By Lemma 2.5 and the assumption that P h-separates, this proposition implies 

that  any bad measure on (.Y, ~') is shadowed by A p  or has small entropy. Hence, 

applying Theorem 2.4 and using the hypothesis htop(Ap, f )  < h(f),  we see that  
the entropy of any bad measure on (2¢, 9 v) is small. 

Thus, the bad set X' \ 2¢ ~ is therefore h-negligible. 

2.4 BAD MEASURES ON (~',  9~'). To finish the proof of Theorem A, we have to 

see that X \ 2~ ~ is h-negligible. 

We remark that  the result of the previous subsection implies (using the 

isomorphism ~: 2(' --+ X') that h(]) > h(f) > htop(AP, f). Hence, to get 

an h-isomorphism, it will be enough to prove that bad measures of (~', .~) have 

entropy less than htop(Ap, f) .  

PROPOSITION 2.7: Let ft be an invariant and ergodic probability measure of 
K (2,  5~). Assume that f i (2 \ 2 ')  > O. Then #,fi is P-shadowed by Uk=0 f k (AP)  

for some finite K. 

h K Remark that  top(Uk=0 fk(AP) ,  f )  = hto,( AP, f)- 

Proof." Let 12 be as above. By ergodicity,/2(2( \ X') -- 1. Write X' -- NpeZ Xp 
with 2p = {~ C 2 :  3n > 0~p = ]'~(i(~(~p_,~)))}. 

I t  is obvious that  Xp C 2(p+1. Now fi'-12(p = 2(p+1 so that Xp and .~p+l have 

the same measure. Hence ,~p = 2~p+1 modulo/t: /~-almost all points must belong 

to 2( ~ 2(p for each p E Z. 
^ 

Using formula (2.1) for p ,  we see that this means that, for/~-almost all ~, for 

each p C Z, 

Pn+l(Xp_n ) ~ Dv-n Vn >_ O. 

Hence the connected set P~+x(Xp-~) must meet the boundary of Dp-n in X. 

This boundary is contained in the union OP U A P  U f ( A P ) U . . .  U f t -1  (AP) with 
the level of Dp_,~: the level of an element D of 7:) is the smallest integer k such 

that  D E :Dk, i.e., such that  there exists A E Pk with f k - l (A)  = D. 



Vol. 112, 1 9 9 9  MULTI-DIMENSIONAL DYNAMICAL SYSTEMS 371 

Take K so large that  the set of points with level at most K has positive measure. 

Then it is possible to find for almost every :~, for all p • Z, an arbitrari ly large 

integer n such that  the level of Dp_~ is bounded by K; thus 

Pn+l(Xp-n) meets  OP U f k ( A P )  U . . .  U fK - I (AP) .  

Applying f to both sides reduces n by one on the left-hand side and changes the 

right-hand side to A P  U . . .  U fK(Ap) .  I 

The previous proposition gives a bound on the entropy of/r./2 when/2 is a bad 

measure on ()~, f ) .  We need a bound on the entropy of/2 itself. I t  is provided 

by the following result: 

PROPOSITION 2.8: Let ~r: ()~',f,/2) --+ (X , f ,# )  be an extension of endomor- 
phisms of Lebesgue probability spaces. Assume that # is countable-to-one. Then 

h(],/2) = h(f,#./2). 

We remark that,  in contrast to the case of an extension of automorphisms (see 

[17, 18]), (J(, f,/2) is not necessarily a finite extension of (X, f,  #). 

Proof: We may assume that  ) (  = X x N (see, for instance, [18, p. 40]). We may 

also assume tha t /2  is ergodic. Set # = #./2. It is obvious that  h(f,/2) > h(f, #). 
We prove the reverse inequality. Let e > 0. 

/2 being ergodic, we have that  (see [19, p. 72]) 

(2.6) h(f,/2) = sup lim sup 1 log r((~, n,/2), 
(~ n - + o o  n 

where O ranges over a family of finite measurable partitions of )(  which is stable 

by finite joining and the union of which generates the measurable subsets, and 

r(Q, n,/2) is the minimal number of elements of On necessary to have a measure 

at least c, where c is any constant with 0 < c < 1. 

We shall consider the finite measurable partitions O of the form # - I ( Q )  v 

with Q some finite parti t ion of X and ~b the parti t ion of X × N generated by the 

subsets X × {i} for i = O, 1 , . . . ,  r - 1 for some r < oc. We fix such a parti t ion 

Q. Set/3 > 0 so small that  

C~ 2~n _< e ~n and /3 < e/2 log # Q .  

Pick some do E N such that/2([d0]) > 0. Here we have used the notat ion 

[ d o ' "  d,~] de f {~ • ~ :  7 r 2 ( ] k ( ~ ) )  ~__ dk for 0 < k < n} 
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(a cylinder on J~). 
Choose a non-decreasing sequence of finite subsets Gn C N, n > 1, with the 

property that: 

/2(Sn) :=/2 ( dl,...,dnEGnU [do'"dn])>/2([do])(1-1/4-1/2 . . . . .  1/2 ~+1 ) 

>/2([d01)/2. 

Set S. = Nn_>l Sn" Clearly/2(S.) > 0. By the ergodicity of/2, if M is large 
M enough, then U,~=0 i-m(S*) has measure at least 1 -  f}. Now pick N >_ log #(~- 

e - l M  so large that  C3n "/N <_ e ̀n. 
Let R be the finite and measurable partition of X generated by Q and by the 

sets ¢r(X x {i} rq ] - l ( i  x {j})) for i,j E GN U {do}. Remark that 7? restricted 

to X x {i}, for any i E N, is one-to-one. Hence, for 5 E SN, the element of R N 
which contains x completely determines the element of 0 N containing 5. Now 

h(f, #) > lim sup 1 log r(R, n, #). 
~-~oo n 

Hence, if n is very large, there exists A C X such that #(A) > 3/4 and A is the 
union of at most e n(h(f'~)+e) elements of R'L 

By Birkhoff's ergodic theorem, there exist J C )( such that/2(A) > 3/4 and 

an integer K such that, for n > K and 5 E J 

M 
l # { 0 < k < n - l : ] k ( 5 )  E U f -mSN} >I-2/3" 

m:O 

Se t /}  = J rq # - I (A) .  /2(/3) > 1/2. Now take 5 E /3. To specify the element of 
(~n which contains 5, it is enough to know the following: 

(1) the element of R" containing #(5); 

(2) the position of disjoint segments of times [n~ - mi, ni q- N] included in 

[0,n - 1] such that fn ' (5)  E SN and 0 _< mi <_ M; 
(3) the element of O containing .fk (5) for k not included in such a segment 

or contained in a sub-segment [ni - mi, ni - 1]. 

Bounding from above the number of possibilities for each of these three choices, 

we get that  the number of elements of On necessary to cover/3 is at most 

en(h(.f,~)+e) (~3n/N . ~O(2,8+M/N)n-F(M-.FN) < const, e n(h(f'~)+4e). 
• v n 
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Thus, h(f,  [z, (~) < h(f, #) + 4e. But e > 0 is arbitrarily small and Q ranges in a 

generating, stable-by-joining family of partitions. I 

Thus the bad set 2d "- ,Y' is h-negligible. 

Theorem A is proved. 

3. I somorphism wi th  the  Markov chain 

Let (Z+(7?), a) be the one-sided topological Markov chain defined by the Markov 

diagram Z): 
E+(:D) = {D E/)N: Vp C N Dp --+ Dp+l on 7:)} 

and 

a: (Dr)yeN, ) (Dp+I)pEN. 

Let ~r~): 5: E 3~ ~-+ (~rv(/'~k))neN e E+(:D) be the coding map, defined on the set 

of & E )(  with complete positive orbits. It extends to a map between the natural 

extensions. Recall that  

X x P = {(x, A) e yN x pN: Vn E N x,~ E A,~ and Xn+l  = f(xn)} C X N × pN, 

this set being endowed with the left-shift a. 

THEOREM B: Let (X, P, f)  be a piecewise invertible dynamical system. Assume 

that: 
(H1) P h-separates, 

(H2") the extended boundary: OX x P de~ {(x, A) E X x P: xo E OP} is h- 
negligible. 

Then the coding map 7r~) defines a h-isomorphism between (Jr, ])  and ~+(T)). 

Using Katok's entropy formula [13] one sees that, given some invariant and 

ergodic probability measure ~ of (X x P, a) such that #(OX x P) > 0, one has 

h(#) <_ htop(OX × P ,  a ) .  But this last quantity is the border entropy hB(P, f) .  
Hence, condition (H2) of the Main Theorem implies condition (H2") above: 

Theorem B implies the corresponding part of the Main Theorem. 

In fact, we shall build an isomorphism between ()(, f )  and E+(D) modulo h- 

negligible sets (this is slightly stronger than an isomorphism between the natural 

extensions, which is the definition of h-isomorphism). 

It is convenient to consider the left-shift a acting on X x T) defined as 

{(x,D) EYN×I~+CD) : V n E N  x n + l = f ( x n )  a n d x n E D n } C X  NxT)  N. 
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Remark that  

X C X x 7 9  

modulo the injection 2 ~ (f~(x),#~(fn2)))~eN, defined for all 2 which have a 

complete f-orbit. 
Conversely, it is easy to see that 

x ×F'-5 \ X c U 
k_>0 

with OX × 79 the set of points (x, D) C X × D such that xo C OP. We prove 

that X × D " - ~ ) (  is h-negligible. Let # be an invariant and ergodic probability 

measure of (X × 79, a) such that #(X × 79 "-)() > 0. We have to prove that  # 

has small entropy, i.e., entropy smaller than a constant H < h(f). 

Obviously, #(OX × 79) > 0. By Proposition 2.8, # projects on X × P, to 

a measure with the same entropy, as this projection is countable-to-one. Now 

OX × D projects to OX × P, hence this last set has positive measure for the 
projected measure. By (H2"), the projected measure has small entropy. 

Thus we have proved that ()~, ]) and (X × 79, a) are h-isomorphic. 

We now turn to the h-isomorphism between (X × D, a) and the topological 

Markov chain (E+ (79), a). 

We have the projection 

(x,D) e X x D ,  ~ D E E+(D). 

It is onto: given D E E+(:D), n > 0, Do3f - I (DI )N  .. .Nf-~(D,~) is a non-empty 

open set, hence it meets Nk>_0 f-k (y), the G~-dense set of points in X which have 
a complete orbit. Pick some point x~ in the intersection. Let (x '~, D n) E yN × 79N 

be defined by x'~ = fk(xn) for k >_ 0, D~ = Do and, for each k > 0, Dk~+l is 

the successor of D~ containing fk(x~). Using the relative compactness of the 

elements of P,  (x '~, D '~) converges to (x*, D) for some x* C X N, maybe after 

passing to a subsequence. Thus (x*, D) C X × 79 and D belongs to the projection 

of X x D .  

This proves that  the projection is onto. The problem is the defect in injectivity. 

We remark that  htop(AP, f)  < hB(P,f); therefore, by Theorem A, (X, f)  

and (J(, ])  are h-isomorphic. Hence, by what we have just shown, (X ×~-~, a) 

and (X, f )  are h-isomorphic. In particular, the condition (H1) (P h-separates) 

implies that  the non-injectivity set of 7r~, i.e., the set of (x, D) E X × D such 

that  An>_0 f -nDn  D {x}, is h-negligible within X x 79. 
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It  remains to see that  the image by 7rD of the non-injectivity set is h-negligible 

within E+ (D). It  is enough to see that  if some invariant and ergodic probability 

measure on E+ (D) gives a positive measure to this set, then it can be lifted to 

a measure on X x D which gives a positive measure to the non-injectivity set. 

Therefore the lifted measure (and thus the original measure on E+(ID)) will have 

small entropy. It is enough to apply the following: 

FACT: Let  # be some Borelian invariant probabili ty measure on the shift (A  N, a) 

over some countable set .4. Let  F be some metric space, and fix, for each A ~ ..4, 

some continuous map  gA: FA -+ F defined on some compact  subset  FA of  F.  

Define the measurable  endomorphism a × g o f .A N x F by 

× g ) ( a , x )  = 

A s s u m e  that  there exists (a*,x*) E A N × F such that  a* is p-generic and that, 

for all n >_ O, (a x g)n(a*,x*)  is defined, i.e., i f  (b,y) = (a × g)n(a*,x*)  then 

y E Fbo. 

Then,  there exists at least one (a x g) invariant probabili ty measure u on 

A N x F project ing to p. 

The proof of this fact is standard: take v to be an accumulation point, in the 

vague topology, of the sequence of measures: 

l n - 1  

vn = - E 5(°xg)k(a',x') ' 
n 

k=0 

Let e > 0. If the finite subset A.  of A is large enough then, setting [.4.] = {a C 

AN: a0 C A.} ,  p([A.] A a - I [ A . ] )  > 1 - e and therefore vn([A.] N a - I [ A . ]  x F)  > 

I - e, for all large n. It  follows that,  for K .  the compact union of the images 

gA(FA) ,  A E A.,  

zJ([A.] x K . )  k lim sup u,~([A.] x K. )  k 1 -- e. 
n ~ O < /  

Letting e decrease to zero, we see that  u is a probability measure. 

This also implies that  z~(ho (a x g ) X [ A . ] x K . )  <-- v(h)  + IIhllooe for an arbi trary 

continuous function h: A N x F --+ R with compact support,  giving the (a x g)- 

invariance of u. 

This p roves the  h-isomorphism of X x :D with E+(ID). 

In conclusion, we have proved the h-isomorphism of ()~, ] )  with the topological 

Markov chain E+(:D) defined by the Markov diagram: this is Theorem B. 
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4. Smal l  e n t r o p y  a t  inf in i ty  

We prove the following uniform version of the statement in the Main Theorem: 

THEOREM C: Let (X, P, f ) ,  f E ~ ,  be a family of piecewise invertible dynamical 

systems. Define 

HA de f lira sup -1 log max ~{A E P~: A n A P  = $}, 
n--+o~ n JEY" 

and let Hp be the supremum, for all f E jz, of the entropies of the invariant and 

ergodic probability measures # of (X,  f )  such that P does not separate lz-almost 

all orbits. 

Then, for every H > max(HA,Hp) ,  there exists N < co such that, for all 

f E Y ,  
N 

u ---,,. 
~=1 

The proof of the corresponding statement in the Main Theorem is similar to 

the proof below and is therefore omitted. 

Remark 4.1: We have the following estimate for Ha .  If X is compact and f 

extends to a continuous map on the whole of X: for every e > 0, there exists 

> 0 and C < co such that 

# { A  E P'~: A M A P  = 0} < C .  r(5, n, OP)mult(P~)e ~n. 

We defer the proof to the Appendix. I 

The reason for this smallness of the entropy is the following. Recall that  the 

level  of D E /)  is the smallest £ such that D E De. One has the following: an 

orbit in X which remains at very high levels in the Markov diagram projects on 

X to an orbit made up of very long pieces of orbits starting in the boundary of 

P.  Indeed, we have the following variant of P-shadowing: 

PROPOSITION 4.2: Let N be a positive integer. Let :~ E f (  be such that 

N 

¢ U v0 < k < n. 
~=1 

Then there exist integers no < nl < ""  < ns = n such that 

n l  hi+l--hi > N and Pn~+~-n~+l(f (x))MAP ~- 0 for all i = O, 1 , . . . ,  s - l ,  
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i.e., each [ni, ni+l] is a P-shadowing interval for x = "?r(:~) C X with respect to 
AP.  

Here no is non-positive: f,~o (~) is to be understood as some pre-image of x by 
flnol; Inol is bounded above by the level of ~. The other n~ 's are positive. 

Proof: Let r be the level of ~. By definition, 7r~(~) E 79 is the image by f r - 1  

of some set A C Pr, i.e., A is a connected component of some r-cylinder. Define 

f - ~ ( x )  to be the unique pre-image of x by f~ in this set. Define accordingly 

f -~+i(x)  = f f ( f - ~ ( x ) )  for 0 < i < r. 

Using ¢rz~(~) = f f (P~+l ( f -~ (x ) ) )  and the formula (2.1) for ]~  we get that  

f~+r(Pn+r+l( f -r (x) ) )  -- 7rlg(fn(~)). 

Now take 0 < k < n + r minimal such that  Fk := fk (Pk+l( f '~-k(x)) )  = 

¢rz~(]'~(&)). By the previous claim such a k exists. As 7rv(]~(2)) e 79k+1, 

k > N > 1. Notice that  the sets Fk are non-increasing with respect to k. 

As k is minimal we have that  Fk C Fk-1. But Fk is the image by f k -1  of some 

connected component of f ( A ) N  Pk( f  ~-k+l(x))  for some A E P.  Therefore, f ( A )  

meets but does not contain Pk(f~-k+l(x)) .  This last set being connected, we 

get tha t  

Of(A) -- fA(OA) meets Pk( f  n-k+l (x)). 

Hence 

Pk( fn-k+l (x )  ) N A P  7 £ O. 

Setting ns = n and ns-1 = n - k + 1, an easy induction on n completes the 

proof. | 

We turn to the proof of Theorem C. 

We are given H > max(Hz~, Hp). Let e ~ f  (H - HA)~4. Pick N so large that  

# { A E P ~ : A N A P ~ O } < e x p ( n ( H - 3 e ) )  V n > N  V f E ~ "  

and that  C 2n/N < e ~ for n >_ 0. Fix now f E 3 r .  

It  is enough to bound the entropy of invariant and ergodic probability measures 

/2 carried by E(79 \ Uk_<g 79k), the natural extension of the corresponding one- 

sided topological Markov chain. We recall that  h(], /2,~r-l(P)) = h(3 c ,# ,P )  

by Proposition 2.8 (here # = #./2 and P is identified with its counterpart  in 

the natural  extension). We may assume that  P separates /z-almost all orbits, 

as otherwise h(#) _< H p  < H.  This implies that: h ( ] , f ~ , f r - l ( P ) ) =  h(],[z) = 
h(5 v, #, P)  = h(~-,/Z). 
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Proposition 4.2 is easily seen to imply that, for/ t-almost every x E W, there 

exists n(x) >_ N such that [ -n(x) ,  0] is a P-shadowing interval for x with respect 

to AP;  n(.) can be defined in a measurable way. Let No be so large that n(-) < No 

on a set of measure greater than 1 - e/ log # P .  

By the ergodic theorem, there exist E C 2d with #(E) > 1/2 and an integer 

L ~ e-1 l o g # P  • No such that, for all x E E and n _> L, 

1 # { 0  _< k < n: n(Z'kx) <_ No} > 1 - c / l o g # P .  
n 

Thus, we can divide [0, n - 1] into P-shadowing intervals with length between N 

and No leaving out a fraction of [0, n -  1] at most e/ log #P+No/L < 2e/log ~ P .  

Hence to specify the element of P'~ containing xk for 0 < k < n, it is enough 

to give: 

(1) the position of the shadowing intervals; 

(2) for each one of these, the element of p1 corresponding to it (l being the 

length of the shadowing interval); 

(3) the element of P containing xk for the times k outside these shadowing 

intervals. 

Thus we get at most 

( 3 2 n / L  . en(H-3E) . ~p2e/log#P.n ~ enH 

possibilities. Hence, using the entropy formula (2.6), 

h(f , f~) = h(.T, #, P) ~_ H, 

proving Theorem C. | 

Appendix 

Proof of Remark 1.5: We claimed that,  for X compact and f continuous on X, 

hB(P, f) < htop(0P,  f )  -~- hmult(P, f ) .  

Let e > 0. By replacing (X, P, f )  with (X, pN, fN) for N large enough we may 

assume that  logmult(P)  _< hmult(P, f )  q- e (the elements of pN are not neces- 

sarily connected but it does not matter  here). We endow pN with the distance 

d(A1,..., AN; B 1 , . . . ,  BN) = maxk dp(Ak, Bk), where dR is the distance on P.  
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Recall t ha t  we have identified the metr ic  space (P, dp) with {1, 1/2, 1 / 3 , . . .  }. 

For simplicity, we now pre tend  N = 1. 

Wri t ing P = {P1, P2, P3, . . .  }, let Q be the finite par t i t ion  

(.J 
k >[2e- 1]-t.-1 

Observe  t ha t  the corresponding par t i t ion of P has a dp-d iamete r  less than  e/2. 

As X is compac t  and Q is finite, there exists 0 < r < e/2 such tha t  every ball 

wi th  radius  r meets  at  most  mu l t (P )  elements of Q. 

Let  n > 1. Let  Cn be an (r, n)-cover of OP with C~ ~ const • e n(ht°p(OP,f)+e). 

Consider  A = [ A 0 " - A ~ - I ]  E Q~ such tha t  A meets  OP. Fix some x E 

-AN OP. Pick y C Cn such tha t  dn(x,y) < r. Ak meets  B( f k ( y ) , r )  for each 

k -- 0, 1 , . . . ,  n - 1. Therefore,  when x ranges in the (r, n)-ball  a round a given y, 

there  is a t  most  m u l t ( P )  choices for each Ak E Q. But  each A o . . .  A~- I  deter-  

mines  an (e/2, n)-bal l  in P~.  Hence, we have found an (e, n)-cover for OX × P, 

so t ha t  the  claim is proved as e > 0 was arbi trary.  | 

As for R e m a r k  4.1, tha t  is, for P finite and f continuous, 

¢p{A E pn: A N A P  = O) <_ C . r(6, n, OP)mult(Pn)e~n; 

it follows f rom a proof  entirely similar to the one just  given. | 
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